
Computer-Assisted Specification
of Asynchronous Interfaces

with Non-deterministic Behavior

A collaborative research project from the University of Colorado Boulder [2]

Computer-Assisted Specification
of Asynchronous Interfaces

with Non-deterministic Behavior

A collaborative research project from the University of Colorado Boulder [2]

Callback Typestates for Android Components

Example: The SimpleTimer Class

Questions

•Are we allowed to
call start() twice?

• Is it possible to recieve
onFinish() after
calling cancel()?

•Can we call start() again
after a cancel()

or onFinish()?

A callback typestate provides this missing information.

start

Both callins and callbacks perform transitions

cancel()

start()

cancel()onFinished()

Answers

•We cannot call start() twice.

•We never receive onFinish()

after calling cancel().

•The SimpleTimer is a single-
use object.

Callback typestates are useful for documentation and verification, but they are rarely pro-
vided in Android library documentation, likely because they are difficult to write with
precision. Our solution: generate them automatically! [2]

Automated Typestate Learning

We use a variation of the L∗ algorithm [1] to automatically search behavior spaces and gen-
erate callback typestates. L∗ and other active learning algorithms perform by performing
queries on a “teacher” that wraps the system under study.

Learner (L∗) Teacher
Android
Component

Membership
Oracle

Equivalence
Oracle

Membership Queries

The L∗ learner builds a prefix-closed set of callin sequences and asks the teacher whether
each one is allowed (and if so what callbacks it produces). In our case, the teacher answers
by running the sequence as a test and recording any callbacks.

[∆, cancel(), start()] → [δ,+,+]
[∆, cancel(), start(),∆] → [δ,+,+, onFinished()]
[∆, cancel(), start(), start()] → error

Equivalence Queries

When the table of callin sequences and results meets certain conditions, L∗ creates an
automaton that contains all the sequences in the table and asks the teacher if it is complete.
This is impossible for most systems to answer perfectly; we simulate the query with a set
of membership queries that distinguishes states according to a selected bound.

Mixing Automation and User Guidance

for Non-deterministic Interfaces

The L∗ algorithm cannot learn interfaces which have non-deterministic callbacks, which
are common for Android components that interact with device sensors or network services.
We therefore package the learning engine as an interactive tool which prompts the user to
bridge over unlearnable behavior when it is encountered. We have discovered several
strategies for isolating non-determinism in this way:

Output Merging

start

callin1()

callbackA()

callbackB()

7

start

callin1()

callbackA() | callbackB()
3

Environment Lifting

readFile()
success()

failure()

Non-deterministic

7

creat
eFile

()

deleteFile()

readFile()

readFile()

success()

failure()

Determinized

3

Multi-form Inputs

If a user suspects that an environmental factor will change the system’s behavior, now or
after a future change, they can perform tentative environment lifting by encoding a single
callback with multiple forms which will be tested independently.

readFile = | createFile(); readFile()
| deleteFile(); readFile()

If the behavior of the two forms matches, it will appear as one callin in the specification.
If they ever diverge, the user will be prompted to fix the bug or fully split them.

Results

• Specifications generated for 10 commonly used Android Framework classes

• 3 classes required user guidance as described above: FileObserver,
SpeechRecognizer, and SQLiteOpenHelper

•Found buggy corner-cases not reasonably discoverable by hand

References

[1] F. Aarts and F. Vaandrager. Learning I/O automata. In CONCUR 2010, pages 71–85,
2010.

[2] Arjun Radhakrishna, Nicholas Lewchenko, Shawn Meier, Sergio Mover, Krishna Chai-
tanya Sripada, Damien Zufferey, Bor-Yuh Evan Chang, and Pavol Cerný. Learning
asynchronous typestates for android classes. CoRR, abs/1701.07842, 2017.


