Nicholas V. Lewchenko! Arjun Radhakrishna?
Akash Gaonkar! Pavol Cerny?

University of Colorado Boulder

2Microsoft

ICFP 2019

Distributed architectures are required for software services
that people rely on.

2/18

Distributed architectures are required for software services
that people rely on.

Distributed applications can survive change.

Centralized services cannot.

2/18

WHhHY DISTRIBUTE?

Distributed architectures are required for software services
that people rely on.

Distributed applications can survive change.

Centralized services cannot.

2/18

+3

deposit 3

@

3/18

+3

3/18

®
Fail\@
®

Failed! @

%

deposit 4

3/18

Failed! @

Availability

3/18

Given some input to a program, what is its output?

4/18

Given some input to a program, what is its output?

A formal system: Dependent Refinement Types

sort : (xs:List) — {xs’: List | length xs = length xs'}

4/18

PrE- AND PosT-CoONDITION REASONING

Given some input to a program, what is its output?

A formal system: Dependent Refinement Types

sort : (xs:List) — {xs’' : List | length xs = length xs’
g g

How could we extend this to a replicated store operation?

Conditions on pre-store — Conditions on (Effect x Return)

4/18

PrE- AND PosT-CoONDITION REASONING

Given some input to a program, what is its output?

A formal system: Dependent Refinement Types

sort : (xs:List) — {xs’' : List | length xs = length xs’
g g

How could we extend this to a replicated store operation?

Conditions on pre-store — Conditions on (Effect x Return)

Consistency

4/18

Failed!

5/18

(&)
Failed! @

5/18

(&)
Failed! @

5

Pre-store

5/18

Failed! @

Pre-store Effect

Return value

Pre-stores of withdraw 3: 5V

5/18

Failed!

Pre-stores of withdraw 3:

Also a pre-store
of withdraw 3

5/18

Failed! @
©

Pre-stores of withdraw 3: 5v/,4v,47

5/18

Pre-stores of withdraw 3: 5v/,4v,47,17

5/18

So how do we maintain both consistency and availability?

6/18

So how do we maintain both consistency and availability?

We don't...

6/18

AN UNFORTUNATE CONFLICT

So how do we maintain both consistency and availability?

We don't...

» Consistency: pre/post logic can be enforced
» Auvailability: a called operation always returns a response

» Partitions: the network may drop arbitrary messages

CAP Theorem: You can only have two.

6/18

AN UNFORTUNATE CONFLICT

So how do we maintain both consistency and availability?

We don't...

» Consistency: output depends on complete input
» Availability: output must eventually be returned

» Partitions: complete input might never arrive

CAP Theorem: You can only have two.

6/18

Partitions are unavoidable for a distributed system.

7/18

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

7/18

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

» Consistency: output depends on complete input

7/18

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

» Consistency: output depends on complete(?) input

7/18

Bur My Aprp NEgeDs ALL THREE!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

» Consistency: output depends on complete(?) input

Available Consistent
| e |
{ Y \
Empty Some def. of Input must
“complete” input include

all pre-stores

7/18

Bur My Aprp NEgeDs ALL THREE!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

» Consistency: output depends on complete(?) input

Available Consistent
| 0 |
Empty Some def. of Input must
“complete” input include

all pre-stores

No balance is universal!
7/18

S

Bur My Aprp NEgeDs ALL THREE!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

» Consistency: output depends on complete(?) input

Available Consistent
| e |
{ Y \
Empty | Consistency Level Input must
include

all pre-stores

No balance is universal!
7/18

The Special Tasks of Replicated Store Programming:

8/18

The Special Tasks of Replicated Store Programming:

1. Configure segments of application to enforce
particular consistency levels.

8/18

The Special Tasks of Replicated Store Programming;:

1. Configure segments of application to enforce
particular consistency levels.

2. Verify that chosen consistency levels preserve
desired application properties (pre/post).

8/18

The Special Tasks of Replicated Store Programming;:

0. Invent a domain of useful consistency levels.

1. Configure segments of application to enforce
particular consistency levels.

2. Verify that chosen consistency levels preserve
desired application properties (pre/post).

8/18

Carol is a programming language that simplifies
the Special Tasks.

9/18

Carol is a programming language that simplifies
the Special Tasks.

» Requires only local, sequential reasoning
from the programmer

9/18

Our CONTRIBUTION

Carol is a programming language that simplifies

the Special Tasks.

» Requires only local, sequential reasoning
from the programmer

» Supports dependent refinement type system
(based on Liquid Types)

9/18

Our CONTRIBUTION

Carol is a programming language that simplifies

the Special Tasks.

» Requires only local, sequential reasoning
from the programmer

» Supports dependent refinement type system
(based on Liquid Types)

Made possible by a novel replicated store runtime.

9/18

First, let’s deposit money.

deposit := An. issue (Add n) inn

10/18

[Add n] := Ax. x +n

First, let’s deposit money.

deposit := An. issue (Add 1) inn

10/18

[Add n] :== Ax. x +n
First, let’s deposit money.

deposit := A\n. issue (Add n) inn

Now we check our balance.

10/18

[Add n] :== Ax. x +n

First, let’s deposit money.
deposit := A\n. issue (Add n) inn
Now we check our balance.

balance := query x inx

10/18

[Add n] :== Ax. x +n

How do we safely withdraw money?

11/18

[Addn] ;== Ax.x+n [Subn]:= X x.x —n

How do we safely withdraw money?

withdraw := An. query x in
if n < x then (issue Sub 7 in 1) else 0

11/18

DEMANDING CONSISTENCY

[Add n] := Ax.x+n [Subn]:=Xx.x—n

[x : LEQ] := x < pre-stores

How do we safely withdraw money?

withdraw := An. query x : LEQ in
if n < x then (issue Sub # in 1) else 0

A query term can be annotated with a consistency guard,
which the runtime enforces until termination of the operation.
11/18

S

DEMANDING CONSISTENCY

[Add n] := Ax.x+n [Subn]:=Xx.x—n

[x : LEQ] := x < pre-stores

How do we safely withdraw money?

withdraw := An. query x : LEQ in
if n < x then (issue Sub # in 1) else 0

A query term can be annotated wit
which the runtime enforces until ter

Special Task 1 v/

11/18

EQV (x = pre-stores)

/N

LEQ GEQ (x > pre-stores)

NS

T

Guards: consistency level domain based on data refinements.

12/18

EQV (x = pre-stores)

/N

LEQ GEQ (x > pre-stores)

NS

T

Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.

12/18

EQV (x = pre-stores)

/N

LEQ GEQ (x > pre-stores)

NS

T

Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.
2. Enables local reasoning,.

Meaning of “x : LEQ” does not depend on

what other operations exist.

12/18

EQV (x = pre-stores)

/N

LEQ GEQ (x > pre-stores)

NS

T

Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.

2. Enables local reasoning.
Meaning of “x : LEQ” does not d)
what other operations exist. SPeCIal Task 0 v/

12/18

D is a Conflict-Aware Replicated Datatype (CARD) that defines
the effects and guards of a store.

13/18

D is a Conflict-Aware Replicated Datatype (CARD) that defines
the effects and guards of a store.

F deposit : (n:Nat) - {OpCtrNat|[e](s)=s+n}
F balance : {OpCtr Int |e =id }

13/18

TuaE CAROL TYPE SYSTEM

PHt:{OpDA|pses}

D is a Conflict-Aware Replicated Datatype (CARD) that defines
the effects and guards of a store.

 deposit : (n:Nat) - {OpCtrNat|[e](s)=s+mn}
F balance : {Op Ctr Int | e =1id }
Everything is an operation!

F5:{OpDInt|e=idAr=5}

13/18

p:=(s>0=[ef(s) > 0) A(r=s—[e](s))

14/18

pi=(s>0=[ef(s) = 0) A(r=s—[e](s))

1. Account never goes below zero

14/18

pi=(8>0=[ef(s) > 0) A(r=s—[e](s))

1. Account never goes below zero
2. Value returned to caller is operation’s real effect on store

14/18

VERIFYING WITHDRAW

p:=(s>0=[ef(s) > 0) A (r=s—[e](s))

1. Account never goes below zero
2. Value returned to caller is operation’s real effect on store

withdraw := An. query x : LEQ in

if n < x then (issue Sub 7 in 1) else 0

I' - LEQ : Guard(Ctr)
Fx:{OpCtrInt|r<s}kif...:{OpCtrNat|yp}

' query x : LEQ inif...: { Op Ctr Nat | ¢ }

14/18

VERIFYING WITHDRAW

p:=(s>0=[ef(s) > 0) A (r=s—[e](s))

1. Account never goes below zero
2. Value returned to caller is operation’s real effect on store

withdraw := An. query x : LEQ in

if n < x then (issue Sub 7 in 1) else 0

I' - LEQ : Guard(Ctr)
Px:{OpCtrInt|r<s}hrif ..:{OpCtrNat|op}

['F query x: LEQinif...: | Gpecial Task 2 v/

14/18

Programmer only needs local, sequential reasoning. ..

15/18

Programmer only needs local, sequential reasoning. ..

But runtime needs more.

15/18

So WHO's PayinG For THis?

Programmer only needs local, sequential reasoning. ..

But runtime needs more.

Add Sub Set
N
LEQ GEQ

Accords tell the runtime which effects are safe during a query.

Theorem: If {guard} is in accord with {effect}, then a query
using {guard} can safely return without including {effect}.

15/18

Accords are more reusable and involve less code than
full-operation concurrent verification.

16/18

Accords are more reusable and involve less code than
full-operation concurrent verification.

(conc. ver.)

16/18

Accords are more reusable and involve less code than
full-operation concurrent verification.

VS.

(conc. ver.) (conc. ver.) (seq. ver.)

16/18

Wuatr Have WE GAINED?

Accords are more reusable and involve less code than
full-operation concurrent verification.

countVisitor‘

checkRobotRoom ‘

(conc. ver.) (conc. ver.) (seq. ver.)

VS.

16/18

17/18

Preserving semantics

» Effects or guards—who gets right-of-way?
» Contention management

17/18

Furture Work: AbDvaANCED RUNTIMES
Preserving semantics

» Effects or guards—who gets right-of-way?

» Contention management

Extending semantics/language

» Direct messages for safety-preserving side deals.

17/18

» Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

18/18

https://github.com/cuplv/discard

» Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

» The local, sequential reasoning is formalized by
a dependent refinement type system

18/18

https://github.com/cuplv/discard

In ConNncLusion

» Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

» The local, sequential reasoning is formalized by
a dependent refinement type system

» Accords statically capture the concurrent knowledge
needed to run many not-yet-written applications

18/18

https://github.com/cuplv/discard

In ConNncLusion

» Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

» The local, sequential reasoning is formalized by
a dependent refinement type system

» Accords statically capture the concurrent knowledge
needed to run many not-yet-written applications

» Haskell DSL and runtime implementation:
https://github.com/cuplv/discard

18/18

https://github.com/cuplv/discard

	Introduction
	Carol Languages
	Accord Analysis
	Runtime Design
	Conclusion

