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Why Distribute?

Distributed architectures are required for software services
that people rely on.

Distributed applications can survive change.

Centralized services cannot.
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Pre- and Post-Condition Reasoning

Given some input to a program, what is its output?

A formal system: Dependent Refinement Types

sort : (xs : List)→ {xs′ : List | length xs = length xs′}

How could we extend this to a replicated store operation?

Conditions on pre-store→ Conditions on (Effect × Return)

Consistency
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An Unfortunate Conflict

So how do we maintain both consistency and availability?

We don’t. . .

I Consistency:

I Availability:

I Partitions:

CAP Theorem: You can only have two.
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An Unfortunate Conflict

So how do we maintain both consistency and availability?

We don’t. . .

I Consistency: output depends on complete input

I Availability: output must eventually be returned

I Partitions: complete input might never arrive

CAP Theorem: You can only have two.
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But My App Needs All Three!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

I Consistency: output depends on complete input

Available

Some def. of
“complete” input

Consistent

Empty Input must
include

all pre-stores

No balance is universal!
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The Special Tasks of Replicated Store Programming:

0. Invent a domain of useful consistency levels.
1. Configure segments of application to enforce

particular consistency levels.
2. Verify that chosen consistency levels preserve

desired application properties (pre/post).
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Our Contribution

Carol is a programming language that simplifies
the Special Tasks.

I Requires only local, sequential reasoning
from the programmer

I Supports dependent refinement type system
(based on Liquid Types)

Made possible by a novel replicated store runtime.
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Let’s Write an ATM Application!

JAdd nK := λx. x + n JSub nK := λx. x − n

First, let’s deposit money.

deposit := λn. issue (Add n) in n

Now we check our balance.

balance := query x in x
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Demanding consistency

JAdd nK := λx. x + n

JSub nK := λx. x − n

Jx : LEQK := x ≤ pre-stores

How do we safely withdraw money?

withdraw := λn. query x in
if n ≤ x then (issue Sub n in n) else 0

A query term can be annotated with a consistency guard,
which the runtime enforces until termination of the operation.
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EQV (x = pre-stores)

LEQ GEQ (x ≥ pre-stores)

>

Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.
2. Enables local reasoning.

Meaning of “x : LEQ” does not depend on
what other operations exist.
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The Carol type system

Γ ` t : { Op D A | ϕs,e,r }

D is a Conflict-Aware Replicated Datatype (CARD) that defines
the effects and guards of a store.

` deposit : (n : Nat)→ { Op Ctr Nat | JeK(s) = s + n }
` balance : { Op Ctr Int | e = id }

Everything is an operation!

` 5 : { Op D Int | e = id ∧ r = 5 }
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Verifying Withdraw

ϕ := (s ≥ 0⇒ JeK(s) ≥ 0) ∧ (r = s− JeK(s))

1. Account never goes below zero
2. Value returned to caller is operation’s real effect on store

withdraw := λn. query x : LEQ in
if n ≤ x then (issue Sub n in n) else 0

Γ ` LEQ : Guard(Ctr)
Γ, x : { Op Ctr Int | r ≤ s } ` if . . . : { Op Ctr Nat | ϕ }

Γ ` query x : LEQ in if . . . : { Op Ctr Nat | ϕ }
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So Who’s Paying For This?

Programmer only needs local, sequential reasoning. . .

But runtime needs more.

Add Sub Set

LEQ GEQ

Accords tell the runtime which effects are safe during a query.

Theorem: If {guard} is in accord with {effect}, then a query
using {guard} can safely return without including {effect}.
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What Have We Gained?

Accords are more reusable and involve less code than
full-operation concurrent verification.

ATM System
RDT

(conc. ver.)

vs. Ctr

CARD

(conc. ver.)

balance

deposit

withdraw

(seq. ver.)

countVisitor

moveRobotX

checkRobotRoom
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Future Work: Advanced Runtimes

Preserving semantics

I Effects or guards—who gets right-of-way?
I Contention management

Extending semantics/language

I Direct messages for safety-preserving side deals.
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In Conclusion

I Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

I The local, sequential reasoning is formalized by
a dependent refinement type system

I Accords statically capture the concurrent knowledge
needed to run many not-yet-written applications

I Haskell DSL and runtime implementation:
https://github.com/cuplv/discard
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