
Sequential Programming
for Replicated Data Stores

Nicholas V. Lewchenko1 Arjun Radhakrishna2

Akash Gaonkar1 Pavol Černý1

1University of Colorado Boulder

2Microsoft

ICFP 2019

Why Distribute?

Distributed architectures are required for software services
that people rely on.

Distributed applications can survive change.

Centralized services cannot.

2/18

Why Distribute?

Distributed architectures are required for software services
that people rely on.

Distributed applications can survive change.

Centralized services cannot.

2/18

Why Distribute?

Distributed architectures are required for software services
that people rely on.

Distributed applications can survive change.

Centralized services cannot.

2/18

Replicated Data Stores

1

1 1

1

deposit 3

+3
+3

Failed!

deposit 4

+4

Availability

3/18

Replicated Data Stores

1

1 1

1

deposit 3

+3

+3

Failed!

deposit 4

+4

Availability

3/18

Replicated Data Stores

4

1 1

1

deposit 3

+3

+3

Failed!

deposit 4

+4

Availability

3/18

Replicated Data Stores

4

1 4

1

deposit 3

+3
+3

Failed!

deposit 4

+4

Availability

3/18

Replicated Data Stores

4

1 4

1

deposit 3

+3
+3

Failed!

deposit 4

+4

Availability

3/18

Replicated Data Stores

4

1 4

1

deposit 3

+3
+3

Failed!

deposit 4

+4

Availability

3/18

Replicated Data Stores

4

1 4

5

deposit 3

+3
+3

Failed!

deposit 4

+4

Availability

3/18

Pre- and Post-Condition Reasoning

Given some input to a program, what is its output?

A formal system: Dependent Refinement Types

sort : (xs : List)→ {xs′ : List | length xs = length xs′}

How could we extend this to a replicated store operation?

Conditions on pre-store→ Conditions on (Effect × Return)

Consistency

4/18

Pre- and Post-Condition Reasoning

Given some input to a program, what is its output?

A formal system: Dependent Refinement Types

sort : (xs : List)→ {xs′ : List | length xs = length xs′}

How could we extend this to a replicated store operation?

Conditions on pre-store→ Conditions on (Effect × Return)

Consistency

4/18

Pre- and Post-Condition Reasoning

Given some input to a program, what is its output?

A formal system: Dependent Refinement Types

sort : (xs : List)→ {xs′ : List | length xs = length xs′}

How could we extend this to a replicated store operation?

Conditions on pre-store→ Conditions on (Effect × Return)

Consistency

4/18

Pre- and Post-Condition Reasoning

Given some input to a program, what is its output?

A formal system: Dependent Refinement Types

sort : (xs : List)→ {xs′ : List | length xs = length xs′}

How could we extend this to a replicated store operation?

Conditions on pre-store→ Conditions on (Effect × Return)

Consistency
4/18

Replicated Data Stores

4

1 4

5

withdraw 3
Pre-store

5 −3
Effect

ok Return value

Failed!

−3

Also a pre-store
of withdraw 3

Pre-stores of withdraw 3:

5X, 4X, 4?, 1?

5/18

Replicated Data Stores

4

1 4

5

withdraw 3

Pre-store
5 −3

Effect

ok Return value

Failed!

−3

Also a pre-store
of withdraw 3

Pre-stores of withdraw 3:

5X, 4X, 4?, 1?

5/18

Replicated Data Stores

4

1 4

5

withdraw 3
Pre-store

5

−3
Effect

ok Return value

Failed!

−3

Also a pre-store
of withdraw 3

Pre-stores of withdraw 3:

5X, 4X, 4?, 1?

5/18

Replicated Data Stores

4

1 4

5

withdraw 3
Pre-store

5 −3
Effect

ok Return value

Failed!

−3

Also a pre-store
of withdraw 3

Pre-stores of withdraw 3: 5X

, 4X, 4?, 1?

5/18

Replicated Data Stores

4

1 4

2

withdraw 3
Pre-store

5 −3
Effect

ok Return value

Failed!

−3

Also a pre-store
of withdraw 3

Pre-stores of withdraw 3: 5X, 4X

, 4?, 1?

5/18

Replicated Data Stores

4

1 1

2

withdraw 3
Pre-store

5 −3
Effect

ok Return value

Failed!

−3

Also a pre-store
of withdraw 3

Pre-stores of withdraw 3: 5X, 4X, 4?

, 1?

5/18

Replicated Data Stores

4

1 1

2

withdraw 3
Pre-store

5 −3
Effect

ok Return value

Failed!

−3

Also a pre-store
of withdraw 3

Pre-stores of withdraw 3: 5X, 4X, 4?, 1?

5/18

An Unfortunate Conflict

So how do we maintain both consistency and availability?

We don’t. . .

I Consistency:

I Availability:

I Partitions:

CAP Theorem: You can only have two.

6/18

An Unfortunate Conflict

So how do we maintain both consistency and availability?

We don’t. . .

I Consistency:

I Availability:

I Partitions:

CAP Theorem: You can only have two.

6/18

An Unfortunate Conflict

So how do we maintain both consistency and availability?

We don’t. . .

I Consistency: pre/post logic can be enforced

I Availability: a called operation always returns a response

I Partitions: the network may drop arbitrary messages

CAP Theorem: You can only have two.

6/18

An Unfortunate Conflict

So how do we maintain both consistency and availability?

We don’t. . .

I Consistency: output depends on complete input

I Availability: output must eventually be returned

I Partitions: complete input might never arrive

CAP Theorem: You can only have two.

6/18

But My App Needs All Three!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

I Consistency: output depends on complete input

Available

Some def. of
“complete” input

Consistent

Empty Input must
include

all pre-stores

No balance is universal!

7/18

But My App Needs All Three!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

I Consistency: output depends on complete input

Available

Some def. of
“complete” input

Consistent

Empty Input must
include

all pre-stores

No balance is universal!

7/18

But My App Needs All Three!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

I Consistency: output depends on complete input

Available

Some def. of
“complete” input

Consistent

Empty Input must
include

all pre-stores

No balance is universal!

7/18

But My App Needs All Three!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

I Consistency: output depends on complete(?) input

Available

Some def. of
“complete” input

Consistent

Empty Input must
include

all pre-stores

No balance is universal!

7/18

But My App Needs All Three!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

I Consistency: output depends on complete(?) input

Available

Some def. of
“complete” input

Consistent

Empty Input must
include

all pre-stores

No balance is universal!

7/18

But My App Needs All Three!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

I Consistency: output depends on complete(?) input

Available

Some def. of
“complete” input

Consistent

Empty Input must
include

all pre-stores

No balance is universal!
7/18

But My App Needs All Three!

Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

I Consistency: output depends on complete(?) input

Available

Consistency Level

Consistent

Empty Input must
include

all pre-stores

No balance is universal!
7/18

The Special Tasks of Replicated Store Programming:

0. Invent a domain of useful consistency levels.
1. Configure segments of application to enforce

particular consistency levels.
2. Verify that chosen consistency levels preserve

desired application properties (pre/post).

8/18

The Special Tasks of Replicated Store Programming:

0. Invent a domain of useful consistency levels.

1. Configure segments of application to enforce
particular consistency levels.

2. Verify that chosen consistency levels preserve
desired application properties (pre/post).

8/18

The Special Tasks of Replicated Store Programming:

0. Invent a domain of useful consistency levels.

1. Configure segments of application to enforce
particular consistency levels.

2. Verify that chosen consistency levels preserve
desired application properties (pre/post).

8/18

The Special Tasks of Replicated Store Programming:

0. Invent a domain of useful consistency levels.
1. Configure segments of application to enforce

particular consistency levels.
2. Verify that chosen consistency levels preserve

desired application properties (pre/post).

8/18

Our Contribution

Carol is a programming language that simplifies
the Special Tasks.

I Requires only local, sequential reasoning
from the programmer

I Supports dependent refinement type system
(based on Liquid Types)

Made possible by a novel replicated store runtime.

9/18

Our Contribution

Carol is a programming language that simplifies
the Special Tasks.

I Requires only local, sequential reasoning
from the programmer

I Supports dependent refinement type system
(based on Liquid Types)

Made possible by a novel replicated store runtime.

9/18

Our Contribution

Carol is a programming language that simplifies
the Special Tasks.

I Requires only local, sequential reasoning
from the programmer

I Supports dependent refinement type system
(based on Liquid Types)

Made possible by a novel replicated store runtime.

9/18

Our Contribution

Carol is a programming language that simplifies
the Special Tasks.

I Requires only local, sequential reasoning
from the programmer

I Supports dependent refinement type system
(based on Liquid Types)

Made possible by a novel replicated store runtime.

9/18

Let’s Write an ATM Application!

JAdd nK := λx. x + n JSub nK := λx. x − n

First, let’s deposit money.

deposit := λn. issue (Add n) in n

Now we check our balance.

balance := query x in x

10/18

Let’s Write an ATM Application!

JAdd nK := λx. x + n

JSub nK := λx. x − n

First, let’s deposit money.

deposit := λn. issue (Add n) in n

Now we check our balance.

balance := query x in x

10/18

Let’s Write an ATM Application!

JAdd nK := λx. x + n

JSub nK := λx. x − n

First, let’s deposit money.

deposit := λn. issue (Add n) in n

Now we check our balance.

balance := query x in x

10/18

Let’s Write an ATM Application!

JAdd nK := λx. x + n

JSub nK := λx. x − n

First, let’s deposit money.

deposit := λn. issue (Add n) in n

Now we check our balance.

balance := query x in x

10/18

Demanding consistency

JAdd nK := λx. x + n

JSub nK := λx. x − n

Jx : LEQK := x ≤ pre-stores

How do we safely withdraw money?

withdraw := λn. query x in
if n ≤ x then (issue Sub n in n) else 0

A query term can be annotated with a consistency guard,
which the runtime enforces until termination of the operation.

11/18

Demanding consistency

JAdd nK := λx. x + n JSub nK := λx. x − n

Jx : LEQK := x ≤ pre-stores

How do we safely withdraw money?

withdraw := λn. query x in
if n ≤ x then (issue Sub n in n) else 0

A query term can be annotated with a consistency guard,
which the runtime enforces until termination of the operation.

11/18

Demanding consistency

JAdd nK := λx. x + n JSub nK := λx. x − n

Jx : LEQK := x ≤ pre-stores

How do we safely withdraw money?

withdraw := λn. query x : LEQ in
if n ≤ x then (issue Sub n in n) else 0

A query term can be annotated with a consistency guard,
which the runtime enforces until termination of the operation.

11/18

Demanding consistency

JAdd nK := λx. x + n JSub nK := λx. x − n

Jx : LEQK := x ≤ pre-stores

How do we safely withdraw money?

withdraw := λn. query x : LEQ in
if n ≤ x then (issue Sub n in n) else 0

A query term can be annotated with a consistency guard,
which the runtime enforces until termination of the operation.

11/18

Special Task 1 X

EQV (x = pre-stores)

LEQ GEQ (x ≥ pre-stores)

>

Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.
2. Enables local reasoning.

Meaning of “x : LEQ” does not depend on
what other operations exist.

12/18

EQV (x = pre-stores)

LEQ GEQ (x ≥ pre-stores)

>

Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.

2. Enables local reasoning.
Meaning of “x : LEQ” does not depend on
what other operations exist.

12/18

EQV (x = pre-stores)

LEQ GEQ (x ≥ pre-stores)

>

Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.
2. Enables local reasoning.

Meaning of “x : LEQ” does not depend on
what other operations exist.

12/18

EQV (x = pre-stores)

LEQ GEQ (x ≥ pre-stores)

>

Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.
2. Enables local reasoning.

Meaning of “x : LEQ” does not depend on
what other operations exist.

12/18

Special Task 0 X

The Carol type system

Γ ` t : { Op D A | ϕs,e,r }

D is a Conflict-Aware Replicated Datatype (CARD) that defines
the effects and guards of a store.

` deposit : (n : Nat)→ { Op Ctr Nat | JeK(s) = s + n }
` balance : { Op Ctr Int | e = id }

Everything is an operation!

` 5 : { Op D Int | e = id ∧ r = 5 }

13/18

The Carol type system

Γ ` t : { Op D A | ϕs,e,r }

D is a Conflict-Aware Replicated Datatype (CARD) that defines
the effects and guards of a store.

` deposit : (n : Nat)→ { Op Ctr Nat | JeK(s) = s + n }
` balance : { Op Ctr Int | e = id }

Everything is an operation!

` 5 : { Op D Int | e = id ∧ r = 5 }

13/18

The Carol type system

Γ ` t : { Op D A | ϕs,e,r }

D is a Conflict-Aware Replicated Datatype (CARD) that defines
the effects and guards of a store.

` deposit : (n : Nat)→ { Op Ctr Nat | JeK(s) = s + n }
` balance : { Op Ctr Int | e = id }

Everything is an operation!

` 5 : { Op D Int | e = id ∧ r = 5 }
13/18

Verifying Withdraw

ϕ := (s ≥ 0⇒ JeK(s) ≥ 0) ∧ (r = s− JeK(s))

1. Account never goes below zero
2. Value returned to caller is operation’s real effect on store

withdraw := λn. query x : LEQ in
if n ≤ x then (issue Sub n in n) else 0

Γ ` LEQ : Guard(Ctr)
Γ, x : { Op Ctr Int | r ≤ s } ` if . . . : { Op Ctr Nat | ϕ }

Γ ` query x : LEQ in if . . . : { Op Ctr Nat | ϕ }

14/18

Verifying Withdraw

ϕ := (s ≥ 0⇒ JeK(s) ≥ 0) ∧ (r = s− JeK(s))

1. Account never goes below zero

2. Value returned to caller is operation’s real effect on store

withdraw := λn. query x : LEQ in
if n ≤ x then (issue Sub n in n) else 0

Γ ` LEQ : Guard(Ctr)
Γ, x : { Op Ctr Int | r ≤ s } ` if . . . : { Op Ctr Nat | ϕ }

Γ ` query x : LEQ in if . . . : { Op Ctr Nat | ϕ }

14/18

Verifying Withdraw

ϕ := (s ≥ 0⇒ JeK(s) ≥ 0) ∧ (r = s− JeK(s))

1. Account never goes below zero
2. Value returned to caller is operation’s real effect on store

withdraw := λn. query x : LEQ in
if n ≤ x then (issue Sub n in n) else 0

Γ ` LEQ : Guard(Ctr)
Γ, x : { Op Ctr Int | r ≤ s } ` if . . . : { Op Ctr Nat | ϕ }

Γ ` query x : LEQ in if . . . : { Op Ctr Nat | ϕ }

14/18

Verifying Withdraw

ϕ := (s ≥ 0⇒ JeK(s) ≥ 0) ∧ (r = s− JeK(s))

1. Account never goes below zero
2. Value returned to caller is operation’s real effect on store

withdraw := λn. query x : LEQ in
if n ≤ x then (issue Sub n in n) else 0

Γ ` LEQ : Guard(Ctr)
Γ, x : { Op Ctr Int | r ≤ s } ` if . . . : { Op Ctr Nat | ϕ }

Γ ` query x : LEQ in if . . . : { Op Ctr Nat | ϕ }

14/18

Verifying Withdraw

ϕ := (s ≥ 0⇒ JeK(s) ≥ 0) ∧ (r = s− JeK(s))

1. Account never goes below zero
2. Value returned to caller is operation’s real effect on store

withdraw := λn. query x : LEQ in
if n ≤ x then (issue Sub n in n) else 0

Γ ` LEQ : Guard(Ctr)
Γ, x : { Op Ctr Int | r ≤ s } ` if . . . : { Op Ctr Nat | ϕ }

Γ ` query x : LEQ in if . . . : { Op Ctr Nat | ϕ }

14/18

Special Task 2 X

So Who’s Paying For This?

Programmer only needs local, sequential reasoning. . .

But runtime needs more.

Add Sub Set

LEQ GEQ

Accords tell the runtime which effects are safe during a query.

Theorem: If {guard} is in accord with {effect}, then a query
using {guard} can safely return without including {effect}.

15/18

So Who’s Paying For This?

Programmer only needs local, sequential reasoning. . .

But runtime needs more.

Add Sub Set

LEQ GEQ

Accords tell the runtime which effects are safe during a query.

Theorem: If {guard} is in accord with {effect}, then a query
using {guard} can safely return without including {effect}.

15/18

So Who’s Paying For This?

Programmer only needs local, sequential reasoning. . .

But runtime needs more.

Add Sub Set

LEQ GEQ

Accords tell the runtime which effects are safe during a query.

Theorem: If {guard} is in accord with {effect}, then a query
using {guard} can safely return without including {effect}.

15/18

What Have We Gained?

Accords are more reusable and involve less code than
full-operation concurrent verification.

ATM System
RDT

(conc. ver.)

vs. Ctr

CARD

(conc. ver.)

balance

deposit

withdraw

(seq. ver.)

countVisitor

moveRobotX

checkRobotRoom

16/18

What Have We Gained?

Accords are more reusable and involve less code than
full-operation concurrent verification.

ATM System
RDT

(conc. ver.)

vs. Ctr

CARD

(conc. ver.)

balance

deposit

withdraw

(seq. ver.)

countVisitor

moveRobotX

checkRobotRoom

16/18

What Have We Gained?

Accords are more reusable and involve less code than
full-operation concurrent verification.

ATM System
RDT

(conc. ver.)

vs. Ctr

CARD

(conc. ver.)

balance

deposit

withdraw

(seq. ver.)

countVisitor

moveRobotX

checkRobotRoom

16/18

What Have We Gained?

Accords are more reusable and involve less code than
full-operation concurrent verification.

ATM System
RDT

(conc. ver.)

vs. Ctr

CARD

(conc. ver.)

balance

deposit

withdraw

(seq. ver.)

countVisitor

moveRobotX

checkRobotRoom

16/18

Future Work: Advanced Runtimes

Preserving semantics

I Effects or guards—who gets right-of-way?
I Contention management

Extending semantics/language

I Direct messages for safety-preserving side deals.

17/18

Future Work: Advanced Runtimes

Preserving semantics

I Effects or guards—who gets right-of-way?
I Contention management

Extending semantics/language

I Direct messages for safety-preserving side deals.

17/18

Future Work: Advanced Runtimes

Preserving semantics

I Effects or guards—who gets right-of-way?
I Contention management

Extending semantics/language

I Direct messages for safety-preserving side deals.

17/18

In Conclusion

I Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

I The local, sequential reasoning is formalized by
a dependent refinement type system

I Accords statically capture the concurrent knowledge
needed to run many not-yet-written applications

I Haskell DSL and runtime implementation:
https://github.com/cuplv/discard

18/18

https://github.com/cuplv/discard

In Conclusion

I Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

I The local, sequential reasoning is formalized by
a dependent refinement type system

I Accords statically capture the concurrent knowledge
needed to run many not-yet-written applications

I Haskell DSL and runtime implementation:
https://github.com/cuplv/discard

18/18

https://github.com/cuplv/discard

In Conclusion

I Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

I The local, sequential reasoning is formalized by
a dependent refinement type system

I Accords statically capture the concurrent knowledge
needed to run many not-yet-written applications

I Haskell DSL and runtime implementation:
https://github.com/cuplv/discard

18/18

https://github.com/cuplv/discard

In Conclusion

I Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

I The local, sequential reasoning is formalized by
a dependent refinement type system

I Accords statically capture the concurrent knowledge
needed to run many not-yet-written applications

I Haskell DSL and runtime implementation:
https://github.com/cuplv/discard

18/18

https://github.com/cuplv/discard

	Introduction
	Carol Languages
	Accord Analysis
	Runtime Design
	Conclusion

