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AN UNFORTUNATE CONFLICT

So how do we maintain both consistency and availability?

We don't...

» Consistency: pre/post logic can be enforced
» Auvailability: a called operation always returns a response

» Partitions: the network may drop arbitrary messages

CAP Theorem: You can only have two.
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AN UNFORTUNATE CONFLICT

So how do we maintain both consistency and availability?

We don't...

» Consistency: output depends on complete input
» Availability: output must eventually be returned

» Partitions: complete input might never arrive

CAP Theorem: You can only have two.
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Partitions are unavoidable for a distributed system.

Consistency and Availability can be balanced as needed.

» Consistency: output depends on complete(?) input

Available Consistent
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{ Y \
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all pre-stores
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The Special Tasks of Replicated Store Programming;:

0. Invent a domain of useful consistency levels.

1. Configure segments of application to enforce
particular consistency levels.

2. Verify that chosen consistency levels preserve
desired application properties (pre/post).
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Our CONTRIBUTION

Carol is a programming language that simplifies

the Special Tasks.

» Requires only local, sequential reasoning
from the programmer

» Supports dependent refinement type system
(based on Liquid Types)

Made possible by a novel replicated store runtime.
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First, let’s deposit money.
deposit := A\n. issue (Add n) inn
Now we check our balance.
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[Addn] ;== Ax.x+n [Subn]:= X x.x —n

How do we safely withdraw money?

withdraw := An. query x in
if n < x then (issue Sub 7 in 1) else 0
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DEMANDING CONSISTENCY

[Add n] := Ax.x+n [Subn]:=Xx.x—n

[x : LEQ] := x < pre-stores

How do we safely withdraw money?

withdraw := An. query x : LEQ in
if n < x then (issue Sub # in 1) else 0

A query term can be annotated with a consistency guard,
which the runtime enforces until termination of the operation.
11/18
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Guards: consistency level domain based on data refinements.

1. Provides immediately clear data-based guarantees.

2. Enables local reasoning.
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TuaE CAROL TYPE SYSTEM

PHt:{OpDA|pses}

D is a Conflict-Aware Replicated Datatype (CARD) that defines
the effects and guards of a store.

 deposit : (n:Nat) - {OpCtrNat|[e](s)=s+mn}
F balance : {Op Ctr Int | e =1id }
Everything is an operation!

F5:{OpDInt|e=idAr=5}
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So WHO's PayinG For THis?

Programmer only needs local, sequential reasoning. ..

But runtime needs more.

Add Sub Set
N
LEQ GEQ

Accords tell the runtime which effects are safe during a query.

Theorem: If {guard} is in accord with {effect}, then a query
using {guard} can safely return without including {effect}.
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Wuatr Have WE GAINED?

Accords are more reusable and involve less code than
full-operation concurrent verification.

countVisitor‘

checkRobotRoom ‘

(conc. ver.) (conc. ver.) (seq. ver.)

VS.
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Furture Work: AbDvaANCED RUNTIMES
Preserving semantics

» Effects or guards—who gets right-of-way?

» Contention management

Extending semantics/language

» Direct messages for safety-preserving side deals.
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In ConNncLusion

» Consistency guards isolate programmer from global,
concurrent reasoning—operations behave according to
local, sequential rules

» The local, sequential reasoning is formalized by
a dependent refinement type system

» Accords statically capture the concurrent knowledge
needed to run many not-yet-written applications

» Haskell DSL and runtime implementation:
https://github.com/cuplv/discard
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