
DroidStar: Callback Typestates
for Android Classes

Arjun Radhakrishna1 Nicholas V. Lewchenko2

Shawn Meier2 Sergio Mover2

Krishna Chaitanya Sripada2 Damien Zufferey3

Bor-Yuh Evan Chang2 Pavol Černý2

1Microsoft (and University of Pennsylvania)

2University of Colorado Boulder

3Max Planck Institute for Software Systems

International Conference on Software Engineering, 2018



DroidStar: Callback Typestates
for Android Classes

Arjun Radhakrishna1 Nicholas V. Lewchenko2

Shawn Meier2 Sergio Mover2

Krishna Chaitanya Sripada2 Damien Zufferey3

Bor-Yuh Evan Chang2 Pavol Černý2

1Microsoft (and University of Pennsylvania)

2University of Colorado Boulder

3Max Planck Institute for Software Systems

International Conference on Software Engineering, 2018



Everyone is using asynchronous frameworks!

2/20



Callins and Callbacks

In asynchronous frameworks, control of execution is divided.

Callins Callbacks

(Controlled by you) (Controlled by framework)

3/20



Callins and Callbacks

In asynchronous frameworks, control of execution is divided.

Callins Callbacks

(Controlled by you) (Controlled by framework)

3/20



Callins and Callbacks

In asynchronous frameworks, control of execution is divided.

Callins Callbacks

(Controlled by you) (Controlled by framework)

3/20



Callins and Callbacks

In asynchronous frameworks, control of execution is divided.

Callins Callbacks

(Controlled by you) (Controlled by framework)

3/20



Callins and Callbacks

In asynchronous frameworks, control of execution is divided.

Callins Callbacks

(Controlled by you) (Controlled by framework)

3/20



Callins and Callbacks

In asynchronous frameworks, control of execution is divided.

Callins Callbacks

(Controlled by you) (Controlled by framework)

3/20



The Android Framework
In the Android Framework, Java objects
are the asynchronous interfaces.

4/20



The Android Framework
In the Android Framework, Java objects
are the asynchronous interfaces.

4/20



Stateful Behavior

Android Framework objects are stateful: what we have seen
and what we have done changes what can happen next.

But in what way?

5/20



Stateful Behavior

Android Framework objects are stateful: what we have seen
and what we have done changes what can happen next.

But in what way?

5/20



Stateful Behavior

Android Framework objects are stateful: what we have seen
and what we have done changes what can happen next.

But in what way?

5/20



Stateful Behavior

Android Framework objects are stateful: what we have seen
and what we have done changes what can happen next.

But in what way?

5/20



Stateful Behavior

Android Framework objects are stateful: what we have seen
and what we have done changes what can happen next.

But in what way?

5/20



Stateful Behavior

Android Framework objects are stateful: what we have seen
and what we have done changes what can happen next.

But in what way?

5/20

Object type is not enough!



A More Complete Picture

I We need a specification that describes stateful behavior
I Should be formal (machine readable) like types

I Paths in the diagram
are possible traces

6/20



A More Complete Picture

I We need a specification that describes stateful behavior
I Should be formal (machine readable) like types

I Paths in the diagram
are possible traces

6/20



A More Complete Picture

I We need a specification that describes stateful behavior
I Should be formal (machine readable) like types

I Paths in the diagram
are possible traces

6/20



A More Complete Picture

I We need a specification that describes stateful behavior
I Should be formal (machine readable) like types

I Paths in the diagram
are possible traces

6/20



A More Complete Picture

I We need a specification that describes stateful behavior
I Should be formal (machine readable) like types

I Paths in the diagram
are possible traces

6/20

Questions answered!



A More Complete Picture

I We need a specification that describes stateful behavior
I Should be formal (machine readable) like types

I Paths in the diagram
are possible traces

6/20

Questions answered!

Callback Typestate



So Where Are They?

I Callback typestates
are clearly useful.

I Informal examples exist as
documentation. . .but not many!

I Writing specifications manually
is tedious and error-prone.

I Can these be produced
automatically?

7/20



So Where Are They?

I Callback typestates
are clearly useful.

I Informal examples exist as
documentation. . .but not many!

I Writing specifications manually
is tedious and error-prone.

I Can these be produced
automatically?

7/20



So Where Are They?

I Callback typestates
are clearly useful.

I Informal examples exist as
documentation. . .but not many!

I Writing specifications manually
is tedious and error-prone.

I Can these be produced
automatically?

7/20



Previous Work in Automated Typestate Inference

Static/symbolic analysis

I Symbolic model of system
I Does not scale to a system

like the Android
Framework

Testing-based

I Use active learning to test
all of behavior space

I Standard methods require
intractable numbers of
tests

8/20



Previous Work in Automated Typestate Inference

Static/symbolic analysis
I Symbolic model of system
I Does not scale to a system

like the Android
Framework

Testing-based

I Use active learning to test
all of behavior space

I Standard methods require
intractable numbers of
tests

8/20



Previous Work in Automated Typestate Inference

Static/symbolic analysis
I Symbolic model of system
I Does not scale to a system

like the Android
Framework

Testing-based
I Use active learning to test

all of behavior space
I Standard methods require

intractable numbers of
tests

8/20



Previous Work in Automated Typestate Inference

Static/symbolic analysis
I Symbolic model of system
I Does not scale to a system

like the Android
Framework

Testing-based
I Use active learning to test

all of behavior space
I Standard methods require

intractable numbers of
tests

Both approaches have only covered
“classical” input-only typestates.

8/20



Active Learning Overview

9/20



Active Learning Overview

9/20



Active Learning Overview

9/20



Active Learning Overview

9/20



Active Learning Overview

9/20



Active Learning Overview

9/20



Active Learning Overview

9/20



Active Learning Overview

9/20



Contributions

1. Distinguisher Bound: an efficient equivalence algorithm
2. DroidStar: a high-level implementation and interface
3. Evaluation:

RQ 1. Is the Distinguisher Bound equivalence
algorithm an improvement?

RQ 2. Is the complete DroidStar tool effective?
RQ 3. Does callback typestate inference reveal

interesting, non-obvious object behavior?

10/20



Contributions

1. Distinguisher Bound: an efficient equivalence algorithm

2. DroidStar: a high-level implementation and interface
3. Evaluation:

RQ 1. Is the Distinguisher Bound equivalence
algorithm an improvement?

RQ 2. Is the complete DroidStar tool effective?
RQ 3. Does callback typestate inference reveal

interesting, non-obvious object behavior?

10/20

1



Contributions

1. Distinguisher Bound: an efficient equivalence algorithm
2. DroidStar: a high-level implementation and interface

3. Evaluation:
RQ 1. Is the Distinguisher Bound equivalence

algorithm an improvement?
RQ 2. Is the complete DroidStar tool effective?
RQ 3. Does callback typestate inference reveal

interesting, non-obvious object behavior?

10/20

2



Contributions

1. Distinguisher Bound: an efficient equivalence algorithm
2. DroidStar: a high-level implementation and interface
3. Evaluation:

RQ 1. Is the Distinguisher Bound equivalence
algorithm an improvement?

RQ 2. Is the complete DroidStar tool effective?
RQ 3. Does callback typestate inference reveal

interesting, non-obvious object behavior?
10/20



Distinguisher Bound

I Standard approach: State Bound (max number of states)
I Equivalence algorithm: try all membership query

sequences up to the number of states

I Distinguisher Bound is the minimum steps out of any two
states that produces a different output

11/20



Distinguisher Bound

I Standard approach: State Bound (max number of states)
I Equivalence algorithm: try all membership query

sequences up to the number of states
I Distinguisher Bound is the minimum steps out of any two

states that produces a different output

11/20



BDist Equivalence Check

Fidelity check for callin A and state 1:

Test all sequences BCD of inputs up to length BDist:

12/20



BDist Equivalence Check

Fidelity check for callin A and state 1:

Test all sequences BCD of inputs up to length BDist:

12/20



Are Distinguisher Bounds Small?

I Standard state bound
approach requires ΣBstate

membership queries
I Distinguisher bound

requires ΣBdist

I In theory, Bdist ≤ Bstate − 1
I In practice, much better!
I 1 or 2, vs. up to 12 states

13/20



Are Distinguisher Bounds Small?

I Standard state bound
approach requires ΣBstate

membership queries
I Distinguisher bound

requires ΣBdist

I In theory, Bdist ≤ Bstate − 1

I In practice, much better!
I 1 or 2, vs. up to 12 states

13/20



Are Distinguisher Bounds Small?

I Standard state bound
approach requires ΣBstate

membership queries
I Distinguisher bound

requires ΣBdist

I In theory, Bdist ≤ Bstate − 1
I In practice, much better!
I 1 or 2, vs. up to 12 states

Class name states Bdist
AsyncTask 5 1
BluetoothAdapter 12 1
CountDownTimer 3 1
DownloadManager 4 1
FileObserver 6 1
ImageLoader (UIL) 5 1
MediaCodec 8 1
MediaPlayer 10 1
MediaRecorder 8 1
MediaScannerConnection 4 1
OkHttpCall (OkHttp) 6 2
RequestQueue (Volley) 4 1
SpeechRecognizer 7 1
SpellCheckerSession 6 1
SQLiteOpenHelper 8 2
VelocityTracker 2 1

13/20



Are Distinguisher Bounds Small?

I Standard state bound
approach requires ΣBstate

membership queries
I Distinguisher bound

requires ΣBdist

I In theory, Bdist ≤ Bstate − 1
I In practice, much better!
I 1 or 2, vs. up to 12 states

Class name states Bdist
AsyncTask 5 1
BluetoothAdapter 12 1
CountDownTimer 3 1
DownloadManager 4 1
FileObserver 6 1
ImageLoader (UIL) 5 1
MediaCodec 8 1
MediaPlayer 10 1
MediaRecorder 8 1
MediaScannerConnection 4 1
OkHttpCall (OkHttp) 6 2
RequestQueue (Volley) 4 1
SpeechRecognizer 7 1
SpellCheckerSession 6 1
SQLiteOpenHelper 8 2
VelocityTracker 2 1

13/20



Are Distinguisher Bounds Small?

I Standard state bound
approach requires ΣBstate

membership queries
I Distinguisher bound

requires ΣBdist

I In theory, Bdist ≤ Bstate − 1
I In practice, much better!
I 1 or 2, vs. up to 12 states

Class name states Bdist
AsyncTask 5 1
BluetoothAdapter 12 1
CountDownTimer 3 1
DownloadManager 4 1
FileObserver 6 1
ImageLoader (UIL) 5 1
MediaCodec 8 1
MediaPlayer 10 1
MediaRecorder 8 1
MediaScannerConnection 4 1
OkHttpCall (OkHttp) 6 2
RequestQueue (Volley) 4 1
SpeechRecognizer 7 1
SpellCheckerSession 6 1
SQLiteOpenHelper 8 2
VelocityTracker 2 1

13/20



Are Distinguisher Bounds Small?

I Standard state bound
approach requires ΣBstate

membership queries
I Distinguisher bound

requires ΣBdist

I In theory, Bdist ≤ Bstate − 1
I In practice, much better!
I 1 or 2, vs. up to 12 states

Class name states Bdist
AsyncTask 5 1
BluetoothAdapter 12 1
CountDownTimer 3 1
DownloadManager 4 1
FileObserver 6 1
ImageLoader (UIL) 5 1
MediaCodec 8 1
MediaPlayer 10 1
MediaRecorder 8 1
MediaScannerConnection 4 1
OkHttpCall (OkHttp) 6 2
RequestQueue (Volley) 4 1
SpeechRecognizer 7 1
SpellCheckerSession 6 1
SQLiteOpenHelper 8 2
VelocityTracker 2 1

13/20



Are Distinguisher Bounds Small?

I Standard state bound
approach requires ΣBstate

membership queries
I Distinguisher bound

requires ΣBdist

I In theory, Bdist ≤ Bstate − 1
I In practice, much better!
I 1 or 2, vs. up to 12 states

Class name states Bdist
AsyncTask 5 1
BluetoothAdapter 12 1
CountDownTimer 3 1
DownloadManager 4 1
FileObserver 6 1
ImageLoader (UIL) 5 1
MediaCodec 8 1
MediaPlayer 10 1
MediaRecorder 8 1
MediaScannerConnection 4 1
OkHttpCall (OkHttp) 6 2
RequestQueue (Volley) 4 1
SpeechRecognizer 7 1
SpellCheckerSession 6 1
SQLiteOpenHelper 8 2
VelocityTracker 2 1

13/20

RQ 1 3



DroidStar 1

I Java/Scala library for creating and configuring instances of
our active learning technique

I User writes a LearningPurpose

1. Callin symbols with associated code snippets
2. Subclass instrumented with callback reports
3. Initializer to create fresh objects for tests
4. Various option settings

I Compiles into an app that runs on an Android device

1https://github.com/cuplv/droidstar
14/20

https://github.com/cuplv/droidstar


DroidStar Example 2

Defining a LearningPurpose for AsyncTask.

2Tutorial:
https://github.com/cuplv/droidstar#writing-an-experiment

15/20

https://github.com/cuplv/droidstar#writing-an-experiment


DroidStar Example 2

Defining a LearningPurpose for AsyncTask.

1. Define callin symbols with code snippets

2Tutorial:
https://github.com/cuplv/droidstar#writing-an-experiment

15/20

https://github.com/cuplv/droidstar#writing-an-experiment


DroidStar Example 2

Defining a LearningPurpose for AsyncTask.

2. Instrument subclass with callback reports

2Tutorial:
https://github.com/cuplv/droidstar#writing-an-experiment

15/20

https://github.com/cuplv/droidstar#writing-an-experiment


DroidStar Example 2

Defining a LearningPurpose for AsyncTask.

3. Define initializer for test isolation

2Tutorial:
https://github.com/cuplv/droidstar#writing-an-experiment

15/20

https://github.com/cuplv/droidstar#writing-an-experiment


DroidStar Evaluation

I Learned useful callback typestates for 16 commonly used
Android Framework classes

I Process: manually identify significant callins and callbacks
from online documentation, write and adjust
LearningPurpose accordingly

I Discovered 7 cases
of behavior that
deviates from online
documentation

Class name LP LoC Time (s) Mem. Queries
AsyncTask 79 49 372 (94)
BluetoothAdapter 161 1273 839 (157)
CountDownTimer 94 134 232 (61)
DownloadManager 84 136 192 (43)
FileObserver 134 104 743 (189)
ImageLoader (UIL) 80 88 663 (113)
MediaCodec 152 371 1354 (871)
MediaPlayer 171 4262 13553 (2372)
MediaRecorder 131 248 1512 (721)
MediaScannerConnection 72 200 403 (161)
OkHttpCall (OkHttp) 79 463 839 (166)
RequestQueue (Volley) 79 420 475 (117)
SpeechRecognizer 168 3460 1968 (293)
SpellCheckerSession 109 133 798 (213)
SQLiteOpenHelper 140 43 1364 (228)
VelocityTracker 63 98 1204 (403)

16/20



DroidStar Evaluation

I Learned useful callback typestates for 16 commonly used
Android Framework classes

I Process: manually identify significant callins and callbacks
from online documentation, write and adjust
LearningPurpose accordingly

I Discovered 7 cases
of behavior that
deviates from online
documentation

Class name LP LoC Time (s) Mem. Queries
AsyncTask 79 49 372 (94)
BluetoothAdapter 161 1273 839 (157)
CountDownTimer 94 134 232 (61)
DownloadManager 84 136 192 (43)
FileObserver 134 104 743 (189)
ImageLoader (UIL) 80 88 663 (113)
MediaCodec 152 371 1354 (871)
MediaPlayer 171 4262 13553 (2372)
MediaRecorder 131 248 1512 (721)
MediaScannerConnection 72 200 403 (161)
OkHttpCall (OkHttp) 79 463 839 (166)
RequestQueue (Volley) 79 420 475 (117)
SpeechRecognizer 168 3460 1968 (293)
SpellCheckerSession 109 133 798 (213)
SQLiteOpenHelper 140 43 1364 (228)
VelocityTracker 63 98 1204 (403)

16/20

RQ 2 3



DroidStar Evaluation

I Learned useful callback typestates for 16 commonly used
Android Framework classes

I Process: manually identify significant callins and callbacks
from online documentation, write and adjust
LearningPurpose accordingly

I Discovered 7 cases
of behavior that
deviates from online
documentation

Class name LP LoC Time (s) Mem. Queries
AsyncTask 79 49 372 (94)
BluetoothAdapter 161 1273 839 (157)
CountDownTimer 94 134 232 (61)
DownloadManager 84 136 192 (43)
FileObserver 134 104 743 (189)
ImageLoader (UIL) 80 88 663 (113)
MediaCodec 152 371 1354 (871)
MediaPlayer 171 4262 13553 (2372)
MediaRecorder 131 248 1512 (721)
MediaScannerConnection 72 200 403 (161)
OkHttpCall (OkHttp) 79 463 839 (166)
RequestQueue (Volley) 79 420 475 (117)
SpeechRecognizer 168 3460 1968 (293)
SpellCheckerSession 109 133 798 (213)
SQLiteOpenHelper 140 43 1364 (228)
VelocityTracker 63 98 1204 (403)

16/20



Interesting Example: AsyncTask

I 92 queries, 49 seconds
I Unexpected: it is possible to call an execute()

that never produces results!

17/20



Interesting Example: AsyncTask

I 92 queries, 49 seconds
I Unexpected: it is possible to call an execute()

that never produces results!

17/20

RQ 3 3



Future Work: Tooling
How can DroidStar fit into a software engineering workflow?

I Part of the API

I Documentation

I Intelligent IDE assistance

I Part of the test suite

18/20



Future Work: Tooling
How can DroidStar fit into a software engineering workflow?

I Part of the API
I Documentation

I Intelligent IDE assistance

I Part of the test suite

18/20



Future Work: Tooling
How can DroidStar fit into a software engineering workflow?

I Part of the API
I Documentation

I Intelligent IDE assistance

I Part of the test suite

18/20



Future Work: Tooling
How can DroidStar fit into a software engineering workflow?

I Part of the API
I Documentation

I Intelligent IDE assistance

I Part of the test suite

18/20



Summary

1. Practical equivalence check based on distinguisher bound

2. DroidStar, an implementation of our modified active
learning technique for Android, with a high-level interface
for developer use

3. Success in learning useful callback typestates for 16
commonly used Android classes, with some surprises

19/20



Summary

1. Practical equivalence check based on distinguisher bound
2. DroidStar, an implementation of our modified active

learning technique for Android, with a high-level interface
for developer use

3. Success in learning useful callback typestates for 16
commonly used Android classes, with some surprises

19/20



Summary

1. Practical equivalence check based on distinguisher bound
2. DroidStar, an implementation of our modified active

learning technique for Android, with a high-level interface
for developer use

3. Success in learning useful callback typestates for 16
commonly used Android classes, with some surprises

19/20



Summary

1. Practical equivalence check based on distinguisher bound
2. DroidStar, an implementation of our modified active

learning technique for Android, with a high-level interface
for developer use

3. Success in learning useful callback typestates for 16
commonly used Android classes, with some surprises

Together, a solution to the practical
automated typestate learning problem.

19/20



End

Questions?

Try out our tool: https://github.com/cuplv/droidstar

20/20

https://github.com/cuplv/droidstar

	Motivation
	Contributions
	Conclusion

